If you’ve followed iNform’s blogs and social media we quite often comment that we are “Made to Move”. However, why do we (I’m talking society as a whole) find it so hard to get out and be active? Why is it so easy to be lazy? Well it seems our drive toward sedentarism is not a new thing. We’ve just happened to get really good at it in recent years!

You see the evolution of us humans has been occurring for hundreds of thousands of years and for around 95% of this time we were hunters and gatherers of our food. During this time we used to walk 15-20 km per day, mainly in search for food (Cordain et al., 1998). We are still physiologically built for this environment, hence we were made to move.

Evolution may drive our desire to be lazy

However, like most animals, we have an in built drive to maximising our energy intake while minimising our expenditure and become as lazy as possible. We needed to be efficient at gathering our food, but in the days of hunting and gathering it was most efficient to stay on the move (Park, 1988). Even the success of a tribe (as expressed by their fertility rates) were greater if they moved more (Surovell, 2000).

Our drive for dopamine kept us on the move

So during this time our physiology worked for us. The increase in protein from hunting, led to increased dopamine production, which led to brain development (Previc, 1999). Now dopamine is a hormone that drives us to explore and increases our desire to move and do things. This drive is what gives us the desire to travel and see the world. However in today’s environment this involves very little physical activity!

Interestingly a lack of dopamine production and sensitivity leads to decreased physical activity in animal studies (Ingram, 2000). Scientists have also found the “lazy gene” in rodents which decreases the amount of dopamine receptors making you less like to enjoy the exploratory movement benefits of dopamine (http://ajpregu.physiology.org/content/early/2013/03/28/ajpregu.00581.2012).

Now if we go back to our hunting and gathering days, exercise would have been in the form of chase hunting. This involved running with a prey until it dropped of exhaustion. Interestingly this type of exercise would have further increased our dopamine levels (Previc, 1999). This positive feedback loop was thought to help us develop into the intelligent species we are today!

So what happened, why did we become so lazy?

Why do so many of us lack the motivation to move? You see dopamine feeds on itself. It increases when you move more but to get it’s feel good exploratory effects you need to start moving! And in today’s environment we no longer need to move to survive!

And where did it all go wrong? As I stated above, most creatures are hardwired to conserve energy, and around 40,000 years ago we learnt that rather than adapting to our environment we could manipulate the environment to suit us. This period was toward the end of the Ice Age and as the Earth warmed cereal crops flourished. By 10,000 years ago we started to get really good at farming and hence the agricultural revolution began (Phelps, 1994).

This meant that we could stay in one place and tend to our crops. We could also store surplus grains for the winter. Where once our hunting and gathering tribes would have mobile camps, humans were now able to establish more permanent housing structures and areas to congregate, and create barriers to keep predators and the pressures of external nature away (Mumford, 1956).

Now over time we’ve gradually become better and better at food production, needing less physical energy to produce. The industrial revolution brought the machines that would end up doing the work for us. Now, the vast majority of us, no longer need to expend energy to get our food and being lazy has become an option.

Fighting our drive to become lazy

All of this came about due to our innate drive to conserve energy in order for us to feel safe and secure. It has now got the the point where high energy food is an abundance and we have to do very little to get it. We can literally sit in the comfort of our homes (even work from home like I’m currently doing!) and order our food to be delivered to us.

Think of how much movement you need to do in the day. Once it was part of life in order to survive but now movement, for most people is a choice. The problem being is that our physiological systems and hence our physical health are built in a stone-age time of when we were “made to move”.

Without thinking, our hardwiring will drive us to be as sedentary as possible and we now have the physical environment to allow us to do this. So this choice to move now needs to be a conscious one. What we do have going in our favour though is the dopaminergic system that feeds on itself. Once we start moving and exercising, we’ll be driven to do more, and as a consequence we’ll improve our brain function and overall health.

So your choice is simple.

Either you sit back and let this innate drive toward laziness and physical environment we’re creating push you toward and enclosed sedentary lifestyle; OR, you get back to your hunting and gathering roots and choose to move more and explore this world we live in!


Cordain, L., Gotshall, R. W., Boyd Eaton, S., & Boyd Eaton III, S. (1998). Physical activity, energy expenditure and fitness: An evolutionary perspective. International Journal of Sports Medicine, 19, 328-335.

Ingram, D. K. (2000). Age-related decline in physical activity: Generalization to nonhumans. Medicine and Science in Sports and Exercise, 32(9), 1623-1629.

Mumford, L. (1956). The natural history of urbanization. In W. L. Thomas (Ed.), Man’s role in changing the face of the earth (pp. 382-400). Chicago: University of Chicago Press.

Park, R. J. (1988). How active were early populations? Or squeezing the fossil record. In R. M. Malina & H. M. Eckert (Eds.), Physical activity in early and modern populations: American Academy of Physical Education papers No. 21 (pp. 13-21). Champaign, IL: Human Kinetics.

Phelps, M. T. (1994). How important is the role of intelligence in the rise of civilization? Mankind Quarterly, 34(4), 287-296.

Previc, F. H. (1999). Dopamine and the origins of human intelligence. Brain and Cognition., 41(3), 299-350.

Roberts, M.D., Brown, J.D., Company, J.M., Oberle, L.P., Heese, A.J., Toedebusch, R.G., Wells, K.D., Cruthirds, C.L.,  Knouse, J.A., Ferreira, J.A.,Childs, T.E., Brown, M., Booth, F.W. (2013). Phenotypic and molecular differences between rats selectively bred to voluntarily run high vs. low nightly distances American Journal of Physiology – Regulatory, Integrative and Comparative Physiology, 304(11) R1024-R1035.
Surovell, T. A. (2000). Early Paleoindian women, children, mobility, and fertility. American Antiquity, 65(3), 493-508.

HTML Snippets Powered By : XYZScripts.com