Move yourself free of pain: Part 2

Move yourself free of pain: Part 2

Now in part one of this blog we learnt that pain is a vital part of our survival but sometimes it can persist for longer than we need. So now I’d like to share with you some of the longer term changes that can occur as discovered by pain scientists (Hodges & Tucker, 2011). These adaptations give us a road-map on how to use exercise and movement to free ourselves from pain.

Pain leads to changes in the way we move

Think of a time when you may have hurt yourself and you were in pain. A very common occurrence is twisting your ankle. Sometimes this doesn’t create much tissue damage but it can have a very significant pain response. What you’ll notice is that you’ll limp, maybe just for a little while, as the pain changes the way we move so that we don’t load the affected area too much.

Our muscles around the area will “splint” to stiffen the area up and we’ll subconsciously take load off of the affected side. Now as I stated in part 1 of this blog, this is really useful during the first few months of tissue healing. But long term this can have other consequences. Some common examples are that if we were to injure a joint (let’s stay with the ankle). It can increase the load in joints further up the chain (such as the knee or hip). Alternately, let’s say that we injured our right ankle, if we don’t correct the way we are limping, we’ll place more weight through our left side making it work harder. This could then make the left leg more predisposed to injury.

Now many of these changes in how we move are subconscious. A lot of people don’t realise they are limping long after their initial injury. So sometimes we need to retrain our body to move freely and more evenly again. This is where specific corrective exercise can be useful.

Pain changes the way our muscles fire!

Not only does pain change the way we move, in doing so it also changes the way our muscles fire.

Some muscles will become facilitated

That is, they increase their tone to help protect and splint a particular area. Again while this might be useful for the first few months, these muscles tend to get tight and overworked in the long term.

They also become over-sensitised to pain to the point where even a gentle stretch, well below the threshold that would create tissue damage, creates a pain response. This is where it is important to get these muscles moving freely again, even if it is a little uncomfortable at first. In doing so we are retraining our protective response. Over time our brain no longer deems the use of these muscles as threatening and our pain will gradually decrease.

Some muscles will become inhibited

Now interestingly, while some muscles increase in tone others will “go to sleep”. These are quite often called inhibitions and the long term consequence of these muscles not firing properly can place undue stress on other tissues.

I don’t know whether anyone really knows why this occurs. Perhaps it is part of our short term protective response to prevent us from using a particular area and allow for healing. However we do know that in the brain the areas that fire a particular area become “smudged”. That is when we try to fire a particular muscle we might get a whole group of muscles firing (quite often the protective facilitated ones).

What we find is that we need to “wake up” these inhibited muscles which are quite often muscles that are important for the long term use of our past injured joints. And it is not until these muscles are firing properly again that our pain will subside.

Everyone’s protective pain response is individual

Finally, and most importantly, what we know is that our response to an injury and pain is unique and individual. How we move after an injury depends on what we were doing to cause the injury. How we splint and what muscles tighten up is very individual. And what muscles go to sleep and lose their capacity to fire can be different as well.

Interestingly, all of these people though may have the exact pain in the same location. So it is important that we don’t just focus on the area of pain. In fact, sometimes this can just feed our pain response as it make this area even more sensitive. We need to assess the way you move to see if you are still protecting an area long after it has fully healed. And we also need to identify what muscles are not firing appropriately and what muscles are still stiff and tight trying to protect.

Now this detective work is not always straightforward, particularly if like many of use you’ve accumulated multiple injuries over the years. But unraveling this tangled rope might be one of the best ways to do this and it is probably why good quality movement and exercise is shown to be one of the best ways to free yourself from pain.

References:

Hodges, PW & Tucker, K (2011). Moving differently in pain: A new theory to explain the adaptation to pain. Pain 152 S90-S98

Move yourself free of pain: Part 1

Move yourself free of pain: Part 1

Quite often when we injure or hurt ourselves we tend to go back into our shells and stop our usual activities to prevent pain. This can often mean limiting our movement and exercise, as doing so creates more pain. This is normal and something that shouldn’t be feared.

Pain is a protective response to keep us alive!

Let’s think back to our hunter and gatherer days when our main goals were to eat, sleep and procreate. Back then our survival was dependant on how successful we were in finding our food. This, of course, required a lot of movement. In fact, modern day hunters and gatherers such as the !Kung and Ache tribes average 15-20 km per day. (Cordain et al, 1998). That’s over 20,000 steps a day!

Now obviously if we were to injure ourselves this would severely limit our capacity to hunt and gather. So our in built pain response was designed to allow for tissue healing and conserve energy while our capacity to get food reduces. This protective response in our paleolithic environment was vital to keep us alive. Now pain science can get a bit heavy so I’ve tried to reduce some of the key points for us to understand:

1. Pain tags the brain with the circumstances that lead to creating it.

A toddler only needs to touch a hot stove once to remember that it is not safe to do so again! Back in the hunter and gathering days this might have included the location of dangerous terrain or the time and place of an aggressive animal. Research has shown that the pain response will improve our memory of these specific details.

2. Pain prevents us from moving the affected area for a short period of time.

This is incredibly useful as depending on the tissue that has been injured. It can take around 2 to 12 weeks for the area to heal. Pain can prevent us from loading the particular tissue too much and too soon and allow for recovery.

3. The protective pain response triggers metabolic responses in the body to conserve energy.

Inflammation and cortisol (part of the stress response) both have been shown to increase insulin resistance. This both triggers the body to increase your blood sugar levels for energy and also store your body fat. This is a perfect response for when you didn’t know if or when you would get your next meal. Unfortunately today food is at an abundance and many of us put on weight after an injury. So nowadays we don’t find this too useful!

Pain has short term benefits but can have longer term consequences

As I stated above our protective pain response is really useful for those first few months after the initial injury. However, for many of us pain can go on for much longer than that or we may not have actually had a trauma to create an injury. Long term pain is quite often diagnosed as non-specific pain as doctors can not find any tissue damage or pathology. Sometimes this pain might be the remnants of a past injury that has fully healed. But for some reason our protective pain response remains.

Going into the scientific reasons as to why this occurs is not something we can quickly delve into. However, in part 2 of this blog I’d like to share with you some of the longer term adaptations that occur to us. These adaptations will give us a roadmap as to how to best free ourselves from pain for good.

References:

Cordain, L., Gotshall, R.W., Boyd Eaton, S., & Boyd Eaton III, S. (1998). Physical activity, energy expenditure and fitness: An evolutionary perspective. International Journal of Sports Medicine, 19, 328-335.

Moving to make every minute matter

Moving to make every minute matter

Let’s draw a line in the sand over stress

This won’t be easy today’s world is full of constant time pressures and worries. We are continually rushing around, meeting deadlines, feeling guilty about not spending enough time with the family, and burning the candle at both ends just to get things done. 

Now we’ve known for some time now the benefits of exercise on making us feel better and more productive and in fact I wrote about the neuroscience of it all in a blog back in 2011. However, with summer approaching, and the with the days getting longer, now is the perfect time to take a stand against stress!

      Exercise makes us 20% more productive

This isn’t new information, but to put it in a more quantifiable way:-

Twenty minutes of exercise in the morning will pay you back by adding an extra 80 minutes of productivity to your day. That’s a net gain of 60 minutes to your day!

It also makes us less stressed!

A recent study compared 20 minutes of exercise a day to the equivalent time spent performing mindfulness meditation and heart rate biofeedback (a way of controlling your heart rate through breathing and seeing its effect on your heart). Researchers expected mindfulness to be superior, especially in relation to maintaining attention, improving compassion and decreasing worry. They were wrong!

Exercise was just as effective as mindfulness

This surprised the authors of the study, as mindfulness directly focuses on attention, compassion and control over your thinking. Perhaps exercise has an indirect effect on these attributes as increasing your heart rate and breathing rate may challenge your body to become more aware of the “now”.

And we also know exercise is good for more than just stress and productivity

You only need to read the rest of our blogs to know that exercise benefits us in many different ways.

While reduction in blood pressure has also been shown in mindfulness studies, I doubt that they would be able to compete with the metabolic benefits of exercise. If you’re in need of reducing your blood sugars levels, or you want to drop a few centimetres around your waistline 20 minutes of high intensity exercise would suit you better.

 At iNform we believe that any exercise as part of a personalised program should be done in a mindful way so that you’re not just “going through the motions.”

If you’re “wired” to move and can’t keep still, or life doesn’t enable you to find the adequate “quiet time” at home, exercise might also be a more palatable way of gaining all these benefits.

So let’s stress less and do more!

No matter whether you prefer to spend 20 minutes a day exercising or in mindful meditation we can all experience these benefits. Now is as good a time to draw a line in the sand and establish this daily habit. Your body, health and relationships will thank you for it!

What does your sleep say about your health?

Woman trying to sleepSleep Awareness Week is here and what better time to remind us all the importance of a good night’s sleep.

Do you consistently get less than six hours sleep?
Or, do you frequently wake during the night?

If you do, don’t fear, as we have a few practical sleep hygiene tips to help improve your sleep patterns.  (more…)

Paleo Diet vs Dietary Guidelines: What are we missing out on?

In our previous blog we looked at the evidence supporting the Paleo diet. While promising, these few studies were very short in duration, had relatively small numbers, and were targeted mainly at people with metabolic conditions.bread-group

What is still unknown though is the long term ramifications of eating the Paleo way as there are no studies that go beyond 3 months.

This makes it hard for us to predict.

However, there are many studies that look at the effects of dairy and grains on our health, the very foods that are excluded with the Paleo Diet. We only need to go to the NHMRC report on the Australian Dietary Guidelines to see the evidence.1 (more…)

HTML Snippets Powered By : XYZScripts.com